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This paper presents a new way to reduce data in the laser flash method of 
measuring thermal diffusivity. Experimental temperature vs time data are first 
transformed by using the Laplace transformation, and then they are fitted with 
an appropriate theoretical formula. The data reduction procedure is more 
efficient and enables the use of more realistic models of heat conduction in the 
sample, because the theoretical formulae for transformed temperatures have a 
simpler form than those for nontransformed ones. Some examples of the 
theoretical formulae of transformed temperatures are included here for one- and 
two-dimensional heat transfer, respectively. The models described take into 
account a finite pulse time and heat losses from the sample. Two fitting algo- 
rithms are proposed. Experimentally, the data reduction procedure has been 
tested for a correction of the finite pulse time effect in the flash method. The 
results show that the accuracy of our procedure is comparable with other data 
reduction methods. Provided that the shape and duration of the pulse are 
known, this procedure allows elimination of the finite pulse time effect on 
calculation of the thermal diffusivity for any transformable heat pulse time 
function, even in cases where the other specialized data reduction procedures 
have failed. 

KEY WORDS: flash method; heat conduction equation; Laplace transforma- 
tion; thermal diffusivity. 

1. I N T R O D U C T I O N  

T h i s  p a p e r  p r e s e n t s  a n e w  w a y  to  r e d u c e  d a t a  in  t he  l a se r  f l a sh  m e t h o d  of  

m e a s u r i n g  t h e r m a l  d i f fus iv i ty  [1 ] .  I n  th i s  m e t h o d ,  t h e  f r o n t  su r face  of  a 
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small disk-shaped sample receives a pulse of radiant energy from a laser, 
and the resulting temperature response on the opposite (rear) surface of the 
sample is recorded. The existing data reduction procedures for computing 
the desired value of thermal diffusivity are based on fitting the experimental 
temperature-time data with the theoretically computed curve. Due to the 
complexity of the theoretical formulae, as well as the problems with the 
exact analytical formulation, only relatively simple theoretical models can 
be taken into account in these procedures. The most simple (ideal) model 
assumes that the sample is isotropic, homogeneous, opaque to the pulse 
radiation, and thermally insulated and that the heat pulse is instantaneous 
and uniformly absorved in the front surface of the sample. Using a more 
realistic model is complicated by the fact that analytical formulae for 
temperature curves are commonly very complex, and their form depends 
strongly on the assumed model. Existing fitting procedures are made 
using special boundary and initial condition. They differ from case to 
case, with various limitations imposed on their applicability due to the 
approximations used in the analytical formulae. 

The new method for data reduction is based on the well-known fact 
that the Laplace transforms of the analytical temperature vs time formulae 
have simpler forms than the original ones. Curve-fitting procedures of the 
transformed experimental data with the theoretical ones are more efficient 
and faster than those treating the nontransformed data. 

Although a similar approach based on Laplace transform of tem- 
perature vs time data has been used previously in other methods, this is, 
as far as we know, the first application to the flash method. Iida et al. 
[2~4] proposed three simple methods for measuring the thermal diffusivity 
of solids using a Laplace transformation of the sample temperature. The 
sample in these methods has the form of a circular cylinder [2, 3 ] or a flat 
plate [-4], and the temperature response from a heat input is recorded for 
two positions. Delpech et al. [5] described the use of the Laplace trans- 
form for data reduction in the so-called "front face" flash method for 
measuring thermal properties. In this technique, the temperature response 
caused by the heat pulse is monitored on the irradiated front face of a 
sample. In addition to the difference between the experimental setups, their 
algorithms for computing the thermal diffusivity are completely different 
from those proposed here. 

In this paper, a brief mathematical background in using the Laplace 
transformation in data reduction for the flash method is given. Some 
examples of the theoretical formulae for the transformed temperature 
are included here for one- and two-dimensional heat transfer. The models 
described take into account finite pulse time and heat losses from the 
sample. As a demonstration of the feasibility of this method of data reduc- 
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tion, the problem of finite pulse time in flash method is discussed in detail 
for the case of a triangular shape pulse. The proposed data reduction 
procedure was tested on an experimental set of temperature curves. 

2. T H E O R E T I C A L  M O D E L S  

The theoretical formulae needed for the data reduction procedure can 
be derived as a solution of the heat conduction equation, along with initial 
and boundary conditions which correspond to the chosen model. In the 
case where the heat flux in the sample can be treated as one dimensional, 
then the heat conduction equation is 

~T 02T 
- ~ = ~  Ox--- 2 (O<~x<~L, t > 0 )  (1) 

where t is time, ~ thermal diffusivity, x the space coordinate, L the sample 
thickness, and T= T(x, t) the temperature at the space-time point (x, t). In 
the above-mentioned ideal model, the conditions are 

T(x, 0 ) = 0  (2) 

OT Q 6(t), and ~T = 0 (3) 
x:0 = - - k  

where k is the thermal conductivity of the sample, Q is the amount of heat 
absorbed through unit surface of the sample, and 6(t) is the Dirac delta 
function. 

The solution of Eq. (1), with the conditions given by Eqs. (2) and (3) 
for x = L, and t > 0, can be expressed by the known formula [1 ] 

T(L, t )=To 1+2  ~ ( -1 ) "exp  (4) 
,, : o  ) J  

where 

Q 
To = (5) 

peL 

is the steady-state temperature in the sample after the pulse, p is the 
density, and c is the heat capacity of the sample material. 

The Laplace transform O(p) of a function v(t) is defined as 

6(p) = e-pry(t) dt (6) 
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where p is a number whose real part is positive and large enough to make 
the where p is a number whose real part is positive and large enough to 
make the integral given by Eq. (6) convergent [6]. There are at least two 
ways to compute the theoretical formula for the Laplace transform of the 
temperature in the sample. The first is to insert the known expression for 
T[L, t) into Eq. (6) and to find a solution of this integral. The second, 
more convenient way is to make a Laplace transformation of the heat 
conduction equation with the initial and the boundary conditions and to 
solve this differential equation with the transformed boundary conditions 
for the unknown function T(L, p). 

In the case of the ideal model, the Laplace transform of the temperature 
on the rear surface of the sample after a pulse has the form 

5P(L, p) = T o = sinh 1 L (7) 

A comparison of Eq. (4) with Eq. (7) reveals that the Laplace trans- 
form is a simpler function, more suitable for a numerical or analytical 
treatment. As shown below, this is a typical feature of these formulae also 
in more realistic models. 

In the case when the pulse is not instantaneous and the heat flux 
across the front sample surface is described by a function f(t), the only 
change in formulation of conditions given by Eqs. (2) and (3) is that the 
boundary condition for x = 0 now has the form 

~ x = O  = -Qf(t) (8) 

The desired Laplace transform of the temperature is, in this case, given by 

T(L, p)= To-~p~pf(p) sinh-l (~/~ L) (9) 

wheref(p)  represents the Laplace transform of the heat pulse functionf(t). 
The most usual forms of this function are shown in Table I. 

The temperature at the rear surface of the sample after an exponential 
heat pulse, as derived by Larson and Koyama [-7], has the form 

L 4 exp[ -- (n2~2~zt/L2)] T(L,t)=T o 1+2,_-y7~,2 ,.., ( - 1 ) "  

- (L/x/~P)exp [ 2  sin(L/x/etp)-(t/tp)] I 1 + 2 ttp +--cotx~pL (~p~tp)]} (10) 
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Table I. Heat Pulse Time Distribution Functions and Their Laplace Transforms 

Heat pulse f ( t )  f ( p )  

Instantaneous 
(Dirac delta function) 6(t) 1 

Square 
(p Heaviside unit step #(t) - p(t - z) 1 - exp( -pz)  
function; z duration) 

Triangular z pz 
(tv time of maximum; 2 t 2 [- 
z duration) (0 ~< t ~< tv) 1 ze-Pt~ - tve-P~[ ] 

2 z - - t  
(tv~<t~<r) 

r v - - l v  

0 (0>~t~>z) 
Exponential t ( t ) 1 

(tp time of maximum) . .  exp t, -- ~p t2(p+ tpl)  2 

Comparison of Eq. (10) with its Laplace transform, given by 

T(L,p)=To--~p.t2p(p+tpl)2sinh 1 L (11) 

shows the advantage of using the latter for fitting in a data reduction 
process. 

In the case, where heat is lost from both surfaces of the sample, the 
boundary conditions given by Eq. (3) have the form 

~Xx=0 Q Ho O-~ x HL T(L, t) (12) aT = -  f(t)+__ET(O,t) ' =L = - - E  

and the Laplace transform of temperature is now given by 

HoHL 
T(L, p ) =  T o - -  1 +--p)L2 sinh 

Ho + HL cosh L 
+ - - - -T - -  

(13) 

where Ho and H L a re  the Biot numbers for the front and rear sample 
surface, respectively. 
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If heat is lost from all surfaces of a disk-shaped sample and an axisym- 
metrical heat source acts on the front surface of the sample, then the con- 
ductive heat transfer is described by a two-dimensional heat conduction 
equation in cylindrical coordinates (see Fig. 1.) 

OT [-02T Q2T 1 0T-] 
t LOx- or- r~rj~--r--~l=-v+-=-r+--7-I (O<~x<~L, O<~r<~R, t>O) (14) 

with boundary and initial conditions 

0~-xT x= ~ = - ~ - Q g ( r ) f ( t ) + ~ T ( 0 ,  r,t), O-~x=c = Hc-L 

~-~" r=R HR T(x, R, t) (16) T(x, O, t) < ~ ,  - R 

T(x, r, 0) = 0 (17) 

- - -  T(C, r, t) (15) 

where function g(r) describes the radial distribution of the heat pulse, and 
HR is the Biot number for the lateral surface at r = R. 

r R 

Fig. 1. System of coordinates in the 
sample. 
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As shown in the Appendix, the Laplace transform of the temperature 
rise in the middle of the rear face (at x = L, r = 0) then has the form 

T(L, 0, p) 

2 L  2 _ 2 
= T o ~ f ( p )  ~, #~fl, g(#i)] 

2 2 F (f12 + H o H L  ) sinh(flg) 1 (18) 
~=1 Jo(#~)(H R + #2) [_ + fl,(Ho + HE) cosh(fli)A 

where #~ are positive roots of the equation 

# J I ( # ) - -  H R J o ( # ) = O  

and 

(19) 

;o + - ~,(#i) = g(r) Jo(#ir /R)  r dr (20) 
o~ 

The series in Eq. (18) converges quite rapidly so, for practical purposes, 
only a few terms have to be computed. 

A comparison of formulae for the temperature in a multilayer sample 
(see, e.g., Ref. 8) also shows the relative simplicity of the Laplace-transformed 
ones. 

3. DATA REDUCTION PROCEDURES 

Calculation of thermal diffusivity values from the experimental tem- 
perature vs time data is the aim of a data reduction procedure in the flash 
method. The method proposed here differs from presently used procedures 
in that the experimental data are first transformed by using a Laplace 
transformation, then fitted to relevant theoretical formula. 

Experimental temperature data Ei can be transformed by using the 
definition integral given by Eq. (6) in the form 

~ m 

E(p)  = e - p t E  i dt (21) 

where the infinite upper limit for time is replaced by a maximal value of 
measured time period t m. The error incurred by replacing the upper limit 
in Eq. (21) with a finite time depends on the value of the product pt  m. For 
practical purposes, the number p should be chosen large enough to fulfill 
the condition ptm > 5. For values pt  m > 25, the "later" parts (approximately 
for t ime> tm/3) of the temperature vs time curve have practically no 
contribution to the value of the integral given by Eq. (14). 
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The integral given by Eq. (21) can be solved numerically by using 
Simpson's 1/3 rule [9]: 

- A t  
E(p) ,~-~- lEo + 4(e-p~tE1 + e -  3P'~tE 3 + ... + e - (U-  1)p~tEN 1) 

+ 2(e-2PAtE2 + e-4p~tE4 + "'" + e - - ( U - - 2 ) P Z l t E N  - 2) + e NpAtEN'] (22) 

where At is the time interval between two consecutively recorded values of 
temperature, Eo is the temperature at zero time (beginning of the heat 
pulse), E1 is the temperature at time At, E2 is the temperature at time 2At, 
and so on. The last value, EN, corresponds to temperature at time 
tm= NAt ,  where N is an even integer number. 

3.1. Two-Point Algorithm 

There exists a wide variety of curve-fitting algorithms that can be 
applied to the procedure for finding the desired thermal diffusivity as a 
parameter involved in T(L, p). As can be seen from Eq. (9), (13), or (18), 
the second unknown parameter--steady-state temperature after the pulse, 
To--can be eliminated by dividing two values of the transformed tem- 
perature calculated for different values of p. Comparison of the rates of the 
transformed experimental data with the theoretical one, where a suitable 
formula for T(L, p) is used, is the basis for the so-called "two-point" 
algorithm. The function F, defined as 

F(~)---E(Pl) T(L, Pl) (23) 
E(p2) T(L, Pz) 

has one simple root, ~*, which is the desired thermal diffusivity of the 
sample. The problem of finding ~ reduces to solving an equation F(~)= 0. 

3.2. Least-Squares Algorithm 

Another way to fit the transformed experimental data to a theoretical 
curve, which is highly recommended for a noisy signal, is to use a standard 
least-squares method of finding the optimal values of the unknown 
parameters. The algorithm for nontransformed data, described in Ref. 10, 
can be easily applied to the transformed ones. In this algorithm, which 
enables us to find both the value of the thermal diffusivity and the steady- 
state temperature of the sample, we seek a minimum of the least-squares 
function 

K 

R(~, To)= ~ {E(pj)-- T(L, pj)}2 (24) 
j = l  
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where E(pj) is a Laplace transformation of experimental temperature data 
calculated for the parameter p/, with j = 1, 2, 3,..., K, and T(L, pg) stands for 
a suitable transformed theoretical temperature function [-for example, that 
given by Eq. (9), (13) or (18)]. The necessary conditions for the extremes 
of R(~, To) are given by the set of equations 

~?R(e, To) 0, ~?R(c~, To) = 0 (25) 
~ ~To 

After performing the indicated operations, the equations for both 
parameters can be obtained in the form 

K K 

EjT/(~) ~ Tj(~)OT/(~) ~ EOTg(~) ~ T~(~)=O (26) 
j = l  j = l  j = l  j = l  

To = EjTj(~) T2(~) (27) 
j = i  j 1 

where, for simplicity, E/-E(pj), and T/(~)- T(L, pg)/To. Here, as well as 
in the two-point algorithm, we assume that the only unknown parameters 
in T(L, p j) are ~ and To. 

The optimal value of the parameter ~ can be found numerically by 
solving Eq. (26). To can be then calculated directly from Eq. (27). The 
function on the left-hand side of Eq. (26) depends only on ~ and has only 
one simple root ~*, which corresponds to the desired value of thermal 
diffusivity. The value of To is a useful parameter in some calorimetric 
applications of the flash method. 

4. DISCUSSION 

To demonstrate the use of this data reduction procedure in the flash 
method, the effect of the finite pulse time (when the duration of the heat 
pulse has a finite value) on the reproducibility of thermal diffusivity calcula- 
tions is discussed here in detail. A set of temperature vs time curves E(ti) was 
generated by the flash method, in which the front face of a disk-shaped 
ceramic sample was subjected to a pulse of intense light from a halogen 
lamp. The pulse shape is representable by a triangle of duration z with 
maximum at z/2, as was determined by independent optical measurement. 
The curves (see Fig. 2.) differ from one to another due to the duration of 
the pulse. 

The Simpson's 1/3 rule, given by Eq. (22), was used for Laplace trans- 
formation of E(t+), where the parameter p is from 0.5 to 1.6 s 1 with step 
0.1 s -1 and tm= ]0S. The transformed temperature curves are given in 
Fig. 3. 
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Fig. 2. Temperature vs time curves E(t) with various values of the 
pulse duration. For the curves from left to right, ~ = 0.1, 1.0, 2.0, 3.0, 4.0, 
and 5.0 s. 

For calculating the value a of the thermal diffusivity, the least-squares 
algorithm (LSA) was applied to the transformed data, using the function 

_ L 4 Tj(~)=x~jz~-pa[1-2e-P~/2+e-P~]sinh-l(~L ) (28) 
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Fig. 3. Transformed temperature vs time curves E(p) with various values of the pulse 
duration z. 
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in Eq. (26). Function Tj(e), given in Eq. (28), was derived from Eq. (9), 
where f (p )  stands for a triangular heat pulse, and tv = z/2. All 12 points for 
the value of p were taken into account in this curve-fitting procedure. The 
least-squares algorithm was chosen because the signal (as shown in Fig. 2) 
is fairly noisy and the curves have to be smoothed before applying the data 
reduction procedures. 

For a comparison of reproducibility as well as accuracy, our algorithm 
was tested along with the method of data reduction suggested by Azumi 
and Takahashi [11] and the method proposed by Taylor and Clark [12]. 

The Azumi and Takahashi method consists of adjusting the time 
origin for an "effective" irradiation time of the sample, using the temporal 
center of gravity of the heat pulse t g ,  defined as 

ts = t ' f ( t ' )  dt '  f ( t ' )  dt '  (29) 

where z is the duration of the heat pulse, and f is a heat pulse function. In 
our case ts = r/2. Thermal diffusivity c~ is then calculated from the equation 

L 2 
= 0.1388 - -  (30) 

tl/2 -- ts 

where tl/2 is the time from the beginning of a pulse until the temperature 
of the rear face of the sample reaches half of its maximum value. 

Taylor and Clark, in their method of correction for the finite pulse 
time, suggest calculating thermal diffusivity using the equation 

Cl L 2  
= ( 3 1 )  

8 2 l l / 2  - -  T 

where the known constants cl and c2 depend on the shape of the pulse. In 
our case Eq. (31) is 

0.27057L 2 
(32) 

- 1.9496tl/2 - z 

The results of this test are summarized in Table II. Uncorrected values 
of thermal diffusivity, calculated using the form suggested by Parker et al. 
[ I ] ,  

L 2 
c~ = 0.1388 - - ,  (33) 

tl/2 

are given in this table, too. 
Because the exact reference value for the thermal diffusivity of 

measured ceramic material is not known, the evaluation of accuracy of our 
method is based only on the comparison of results obtained by different 
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Table II. Results of the Experimental Test ~ 

Azumi et al. Taylor et al. Parker et al. 
LSA b [11] [12] [1] 

z(s) ~ A ~ A ~ A ~ A 

0.1 7.775 0 8.059 0 8.065 0 7.808 0 
1.0 7.775 0 7.808 --3.1 7.870 =2.4 5.949 -23.8 
2.0 8.017 3.3 6.752 -16.2 7.040 -12.7 4 .461 -42.8 
3.0 7.732 0.6 6.246 -22.5 6.369 -21.0 3.569 -54.3 
4.0 7.867 1.2 6.094 -24.4 6.251 -22.5 3.084 -60.5 
5.0 7.597 -2.3 5.678 -29.5 5.849 -27.5 2.658 -66.0 

Thermal diffusivity ~ is in 107m 2, s l, and the value A is calculated as the relative difference 
in the percentage of the actual value of ct from the first value in the column. 

b Least-squares algorithm. 

data reduction methods. Under the plausible assumption that the tem- 
perature curve for v = 0.1 s is the least affected by the finite pulse width (the 
duration of the pulse -c is about 20 times smaller than the half-time tl/2) and 
that Azumi's and Taylor-Clark's method can (for this curve) eliminate this 
effect, then, as shown in the first row in Table II, the accuracy of our 
method is comparable with the other specialized procedures. The LSA can 
be successfully applied the other special data reduction procedures already 
failed (when v become comparable with tin). In fact, there are no limita- 
tions for using our data reduction procedure for elimination of a finite 
pulse time effect, provided that the shape and the duration of the pulse are 
(at least approximately) known. 

One of the features of the Laplace transformation, inherent in its 
nature, is that the initial part (in the sense of time) of an original function 
is taken into the transformation with a higher "weight" than later parts. 
This property can be regarded as an advantage from the point of view of 
the heat loss effect, where the sample is not adiabatically isolated. In this 
case, the initial part of the temperature vs time curve is less affected by the 
heat losses from the sample, and it is reasonable to use this part for data 
reduction. 

On the other hand, the very early part is often distorted by direct 
interaction of the heat pulse radiation with the temperature sensor or by 
the time response of the sensor, and this region may be practically 
unusable. One way to minimize this disadvantage is to choose an 
appropriate frequency of sampling of the experimental data which is large 
enough to skip the distorted interval. 
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5. CONCLUSIONS 

The present study describes a new way of reducing data in the flash 
method of measuring thermal diffusivity. Experimental temperature vs time 
data are first transformed using the Laplace transformation, and the 
transformed data are then fitted with a suitable theoretical formula. 
This improves the efficiency and overall performance of the data reduction 
procedure, as well as permitting the use of more realistic models for a 
description of heat conduction in the sample. This is due to the fact that 
the theoretical formulae for the transformed temperature have (as a rule) 
simpler forms than those for nontransformed cases. TWO algorithms for the 
curve-fitting procedure were proposed, too. Experimentally, the data reduc- 
tion procedure has been tested on a correction for the finite pulse time 
effect in the flash method. The results show that the accuracy of our proce- 
dure is comparable with that of other data reduction methods. Provided 
that the shape and duration of the pulse are known, this procedure allows 
elimination of the finite time effect on calculation of the thermal diffusivity 
for any transformable heat pulse time function, even in cases where other 
known data reduction procedures have failed. 

A P P E N D I X  

In order to solve Eq. (14) with conditions given by Eqs. (15)-(17), a 
finite Hankel transformation with regard to r and a Laplace transformation 
can be used successively. 

Writing T for the finite Hankel transform of T, it follows from 
Eqs. (14)-(17) that T satisfies 

(~ a t  I~X 2 R 2 ~" 

with conditions 

k L 

:?l,_o=O 
where 

T= r(x,  r, t) K(#~, r) r dr, ~(#~) = 

K(#i, r)-  "/2 #iJ~ 
Rgo(#~) x / ( H  2 + #~) 

(A1) 

HrL ~" x=L (A2) 

(A3) 

g(r) K(#~, r) r dr 

and #i are positive roots of Eq. (19). 
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Writing ~ for the Laplace transform 
Eqs. (A1)-(A3) that ~ satisfies 

~2~ (#2 

with 

= Hf ~ x=0' O~ Q g(#,) f ( p )  + 
x=o - ;  -Z 

where 

~'= I ~ e-P'T(x, #~, t) dt, and 
J o  

Gembarovi~ and Taylor 

of T, it follows from 

(A4) 

OG x=L -- HrL ~ ~=L (A5) 

f (P)  = ; o  e-Ptf(t) dt 

The solution of Eq. (A4) for x = L, with respect to conditions given by 
Eq. (A5), is 

L 2 _ fl~ g(# , )  
~(L) = T o - - f ( p )  (A6) 

C~ (fl/2 q_ H f H r  ) sinh(fli)  + fli(Hf-}- H~) cosh(fle) 

where fli is given by Eq. (12). 
By inverting the Hankel transform in Eq. (A6), using the known 

formula 

T(L, O, p)= ~, K(#i, 0) ~(L) (A7) 
i=1 

we obtain the form for T(L, 0, p) given by Eq. (18). 
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